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Some stimuli are more memorable than others. Humans have demonstrated partial access to the properties
that make a given stimulus more or less memorable. Recently, a deep neural network named ResMem was
shown to successfully decode the memorability of visual stimuli as well. However, it remains unknown
whether ResMem’s predictions of memorability reflect the influence of stimulus-intrinsic properties or
other stimulus-extrinsic factors that are known to induce interindividual consistency inmemory performance
(e.g., interstimulus similarity). Additionally, it is not clear whether ResMem and humans share access to
overlapping properties of memorability. Here, in three experiments, we show that ResMem predicts stimu-
lus-intrinsic memorability independent of stimulus-extrinsic factors, and that it captures aspects of memo-
rability that are inaccessible to human observers. Taken together, our results confirm the multifaceted nature
of memorability and establish a method for isolating its aspects that are largely inaccessible to humans.

Public Significance Statement
Some images are easier to remember than others, making some images more memorable than others
consistently across human observers. Previous research has shown that both humans and a pretrained
neural network called ResMem can predict image memorability. However, whether humans and
ResMem rely on the same aspects of the images in predicting their memorability remains unclear.
Our study first demonstrated that ResMem predicted the memorability of images without relying on
their interitem similarity among other images. More crucially, we found that humans and ResMem
used largely nonoverlapping aspects of images for memorability prediction, suggesting that ResMem
can be used to elucidate the aspects of memorability that are not explicitly accessible to humans.
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Despite our massive storage capacity in visual long-term memory
(VLTM, Brady et al., 2008; Standing, 1973), not all information that
we encounter is successfully encoded. Interestingly, variability in
memory encoding success for visual information is surprisingly con-
sistent across individuals; some information is consistently remem-
bered across observers while other information is consistently

forgotten (Bainbridge et al., 2013; Isola et al., 2014). This interindi-
vidual consistency in memory performance has been observed
across a variety of visual stimuli (Bainbridge et al., 2013; Khosla
et al., 2015; Mancas & Le Meur, 2013) and has been interpreted
to reflect the existence of a stimulus-intrinsic factor that determines
the likelihood of memory encoding success, namely, memorability.
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To provide further support for the existence of stimulus-intrinsic
nature of memorability, a recent study demonstrated that a pretrained
deep neural network named ResMem was able to predict interindi-
vidual consistency in memory encoding success purely based on
perceptual features of a given image (Needell & Bainbridge,
2022). ResMem was constructed by appending extra learning layers
to an existing neural network (i.e., ImageNet) trained to classify the
category of a given image (e.g., balloon, strawberry, and bread) from
its perceptual features (Krizhevsky et al., 2012).
While ResMem’s ability to predict stimulus-specific memory

performance solely based on perceptual features of a given image
is consistent with the notion that memory encoding success is in
part determined by stimulus-intrinsic properties, these properties
are not the only factors that give rise to interindividual consistency
in memory performance. Past studies have demonstrated that stim-
ulus-extrinsic factors can also induce interindividual consistency in
memory performance (Eysenck, 1979; Hunt & Worthen, 2006;
Koch et al., 2020; Schmidt, 1985). For example, a stimulus (e.g.,
a picture of a cat) can be remembered better across individuals if
it is presented with other stimuli that are homogeneously distinct
(e.g., pictures of dogs) than those that are similar (e.g., pictures
of other cats, von Restorff, 1933). Similarly, individuals can con-
sistently and falsely “remember” seeing an unseen stimulus after
encoding other stimuli that are similar (e.g., Roediger &
McDermott, 1995). Indeed, Bylinskii et al. (2015) demonstrated
the impact of stimulus-extrinsic factors on interindividual consis-
tency in memory performance. More specifically, by manipulating
the algorithmically derived interstimulus similarity among stimuli,
they found that the interstimulus similarity heavily influenced
memory performance such that stimuli that were more distinct
from other stimuli were consistently better remembered across indi-
viduals than less distinct stimuli. ResMem, the deep neural network
model for predicting visual memorability, was trained and tested on
recognition memory performance collected from participants.
Naturally, we may wonder that stimulus-extrinsic effects, such as
stimulus similarity, that affect these ground truth memorability val-
ues may, therefore, bias weights of the artificial neurons in
ResMem. Given that such stimulus-extrinsic effect can emerge in
any stimulus set, it is possible that ResMem relied on extra-
stimulus information uniquely available in the stimulus set used
during its training, rather than the stimulus-intrinsic memorability
of each image, to predict interindividual consistency in memory
performance.
To provide direct evidence that memorability is in part stimulus-

intrinsic, we had participants encode a set of pictures of real objects
that were novel to ResMem while introducing a stimulus-extrinsic fac-
tor known to induce interindividual memory consistency, namely
interstimulus similarity. In Experiment 1, we examined the influence
of interstimulus similarity on interindividual consistency in memory
performance and on ResMem’s predictions about that consistency.
Participants encoded 192 pictures of real-world objects comprising
eight exemplars from 24 different object categories whose within-
category perceived similarity has been empirically validated in a pre-
vious study (Hout et al., 2014). After encoding, participants completed
a recognition test that contained all of the encoded stimuli and eight
new exemplars from each of the 24 object categories. If there is mem-
orability that is context-independent and stimulus-intrinsic and
ResMem has access to it, then ResMem should be able to predict
the interindividual consistency in memory performance for the novel

stimuli even after controlling for the interindividual consistency
induced by interstimulus similarity.

In Experiments 2A and 2B, we compared access to stimulus-
intrinsic memorability between ResMem and human observers.
In a recent study, Saito and colleagues demonstrated that human
observers could predict the memorability of a given stimulus
(Saito et al., 2023). This suggests that humans, like ResMem,
can predict interindividual consistency in memory performance.
However, both ResMem and humans are not perfect at predicting
the intrinsic memorability of a stimulus. Given that memorability
is composed of multiple factors spanning across perceptual and
semantic features of a stimulus (Isola et al., 2014; Kramer et al.,
2023; Rust & Mehrpour, 2020), it is possible that ResMem and
humans utilized dissociable factors to make memorability predic-
tions. To test this possibility, we examined whether ResMem
could predict the subjective memorability judgments that were
made by humans in Saito et al. (2023). If ResMem and humans
rely on overlapping aspects of a stimulus to make their predictions
about its memorability, ResMem should be able to predict
humans’ memorability judgments. If, on the other hand, they
rely on unique aspects, ResMem should not be able to predict
humans’ memorability judgments even if it reliably predicts
memorability. To further examine if our conclusions generalize
to visual stimuli other than objects, we conducted Experiments
3A and 3B using a widely used scene database (SUN database,
Xiao et al., 2010). Previous studies have shown that ResMem
robustly predicted recognition memory performance with scenes
(Wakeland-Hart et al., 2022). Here, we examined whether humans
could predict the memorability of scenes, and if so, whether the
variance explained by humans overlapped with those by ResMem.

Method

Transparency and Openness

This study was not preregistered before data analysis. We report
how we determined all data exclusions, all manipulations, and all
measures in the study. Analyses were performed in MATLAB
2020a and Python 3.7, with the package matplotlib, scipy, numpy,
and seaborn for plotting. Analysis scripts are publicly accessible at
https://osf.io/x3258/. Data and materials used in this study are acces-
sible to the public in the Open Science Framework repository (see
the online supplement materials for reliability of our measurements
and model outputs).

Participants

For Experiment 1, 96 undergraduate students (62 female, 32male,
and two chose not to respond; 17–27 years old,Mage= 19.39, SD=
2.43) at the University of Toronto Mississauga participated in the
experiment in fulfillment of a course requirement for an introductory
psychology course. All participants reported normal or corrected-
to-normal color vision.

Experiments 2A and 2B reanalyzed the data collected in Experiments
1A and 2A of Saito et al. (2023), respectively. For each experiment, 120
young residents of the United States and Canada (Experiment 2A: 18–31
years old,Mage= 24.19, SD= 3.97, nfemale= 61; Experiment 2A: 18–30
years old,Mage= 22.68, SD= 3.13, nfemale= 91) were recruited through
Prolific and received monetary compensation (7.50 £/hr). All participants
reported fluency in English, normal or corrected-to-normal vision, no
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color blindness, no history of head injury, no history of mental illness/
condition, and no cognitive impairment/Dementia. All participants had
successfully completed 90% or more of the studies that they had partic-
ipated in previously on Prolific (i.e., approval rate. 90%).
For Experiments 3A and 3B, 120 young residents of the United

States and Canada were recruited through Prolific and received mon-
etary compensation (7.50 £/hr). All participants satisfied the same
criteria used for Experiments 2A and 2B.

Stimulus Selection and Assignment

For Experiment 1, we used an existing picture database (Hout
et al., 2014). The database contained pictures of 16–17 exemplar
objects from 24 object categories. Crucially, the multidimensional
similarity rating for each exemplar within a corresponding category
has been documented in the previous study (Hout et al., 2014). From
this data set, we selected 24 object categories and sampled 16 exem-
plars from each category (384 objects total). To ensure that each
stimulus served as old (i.e., presented during the encoding task)
and new (i.e., not presented during the encoding task) for an equal
number of participants, we first created 12 sets of old/new stimulus
sets. For each set, a random half of the exemplars (i.e., eight exem-
plars) in each object category was selected as old stimuli, and the
remaining half was assigned as new stimuli. An additional 12 sets
were created by simply reversing the novelty status of the stimuli
in the existing 12 sets. For example, the 13th set was created by
swapping the old and new stimuli in the first set. As a result, we cre-
ated 24 total sets of old and new stimuli, and each set was used to
collect data from four participants.
For Experiments 2A and 2B, we selected a set of 600 images of

random real-world objects from an existing database (Brady et al.,
2008). The stimulus set was then randomly split into four smaller
sets of 150 images so that one of the sets was used as old pictures
and one of the remaining sets was used as new pictures. Each set
was assigned as old and new pictures for 30 participants.
For Experiments 3A and 3B, the same procedure was followed

using a set of 600 images of random real-world scenes from the
SUN database (Xiao et al., 2010).

Apparatus for Online Testing

Due to the pandemic, experiments were conducted remotely using
Inquisit 5 (2016). For Experiment 1, participants were given a pri-
vate Zoom link and password to attend a live experiment with an
experimenter. Given the remote nature of the experiment, screen res-
olution and size were not fixed. Each stimulus was presented to fit
inside of an imaginary square whose side length was set to 20% of
the height of the participants’ computer monitor.
For the remaining experiments, we used the same setup as

Experiment 1 except that (a) each stimulus was set to 12% of the
height of the participants’ computer monitor and (b) the participants
were not monitored through Zoom during participation.

Procedure

All participants electronically signed the informed consent to the
protocol approved by the Research Ethics Board of the University of
Toronto. In Experiment 1, participants first completed the encoding
task (Figure 1A). In this task, participants saw one picture at a time
presented for 1,000 ms at the center of the screen, and they were

asked to memorize the pictures as vividly as possible because
their memory would be tested in the next phase. Each picture was
presented once, and participants encoded 192 pictures (eight exem-
plars× 24 categories) in total.

After completing the picture encoding task, participants’ me-
mories were tested using a recognition memory task (Figure 1B).
In the recognition memory task, participants were presented
with one picture at a time at the center of the screen along with
a 6-point Likert scale, and they judged whether they had seen
the picture during the encoding task by clicking one of the six
response buttons (1= definitely no, 2= probably no, 3=maybe
no, 4=maybe yes, 5= probably yes, 6= definitely yes). The pic-
ture and the Likert scale remained on the computer screen until a
response was made. Participants completed two blocks of 192 tri-
als in which they were presented with 192 old (i.e., presented dur-
ing the encoding task) and 192 new (i.e., not presented during the
encoding task) pictures in a pseudo-random order.

In Experiments 2A and 3A, participants encoded 150 images of
random objects (Experiment 2A) or scenes (Experiment 3A) while
rating the perceived memorability (PM) of each image based on per-
ceived encoding success (PES) (Figure 1C, PES rating). Each image
was presented at the center of the screen for 1,000 ms. Five hundred
milliseconds after the offset of the image, participants answered the
question: “Are you going to remember the picture you just saw?” by
choosing one of the six responses used in Experiment 1. The presen-
tation order of the stimuli was randomized across participants. After
the encoding task, participants performed the recognition task. The
recognition task was identical to that in Experiment 1 except that
participants saw 150 old and 150 new images in a random order.

In Experiments 2B and 3B, participants rated the PMof each image
directly (Figure 1C, PM estimates). Our main goal here was to dem-
onstrate humans’ explicit access to memorability without the explicit
memory encoding demand. The task was identical to the encoding
task in Experiment 2A except that participants were not told to encode
each image and they judged the memorability of each image by
answering a question: “Would an average person remember the pic-
ture you just saw?” by choosing one of the six responses used in
Experiment 2A. The experiment ended after the memorability judg-
ment task without a recognition memory task.

Data Analysis

Quantifying Memorability Scores

Memorability scores for each stimulus were computed by subtract-
ing the average recognition responsewhen the stimuluswas new (aver-
age new response) from the average recognition response when it was
old (average old response). Here, to increase the intuitiveness of the
scores, we reverse-coded participants’ responses such that higher val-
ues meant higher confidence in remembering (e.g., 6= definitely yes)
and lower values meant lower confidence in remembering (e.g., 1=
definitely no). Thus, more positive values indicate higher memorabil-
ity (easier to remember), and less positive values indicate less memo-
rability (harder to remember).

To measure humans’ ability to predict memorability, PES
(Experiments 2A and 3A) and PM (Experiments 2B and 3B) for
each stimulus were computed by averaging the corresponding
scores across participants. Similarly, to increase the intuitiveness
of the scores, we reverse-coded participants’ responses such that
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higher values meant higher encoding success/memorability (e.g.,
6= definitely yes) and lower values meant lower encoding suc-
cess/memorability (e.g., 1= definitely no).

To measure ResMem’s ability to predict memorability, we used
the ResMem network (Needell & Bainbridge, 2022) with no retrain-
ing features implemented.

Figure 1
Experimental Procedures

500ms 1000ms Until Response

500ms 1000ms

Until Response

Perceived Encoding Success Rating
(Experiment 2A)

Perceived Memorability Rating
(Experiment 2B)

Encoding Task (Experiment 1) Recognition Task (Experiment 1 & 2A)

A B

C

Note. Panel A depicts the encoding task in Experiment 1. Panel B depicts the recognition task in Experiments 1 and 2A. Panel C shows the memorability
judgment task in Experiments 2A/3A (PES rating) and in Experiments 2B/3B (PM rating). PES= perceived encoding success; PM= perceived memorability;
Def.= definitely; Prob.= probably. See the online article for the color version of this figure.
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Quantifying the Interstimulus Similarity Within Category
(Similarity Score)

The similarity of exemplars within an object category was based on
a two-dimensional similarity space quantified by Hout et al. (2014).
The x and y coordinates for each exemplar within this similarity
space were used to calculate interstimulus distances for each stimulus
within a given object category. The interstimulus distance for each
stimulus was quantified by computing its average Euclidean distance
from all the other exemplars within the category. Low interstimulus
distance indicates a high similarity of a given exemplar to the other
exemplars in the category, whereas high interstimulus distance indi-
cates a low similarity of a given exemplar to the other exemplars.

Results

Experiment 1

Interstimulus Similarity Predicts Memorability Scores

To confirm that interstimulus similarity can drive interindividual
consistency in memory performance, we first examined the correla-
tion between interstimulus distances and memorability scores. As
predicted, we found a significant negative correlation between the
two variables, r(346)=−.29, p, .001, Figure 2A, such that the
more dissimilar a given item was to other items in the category,
the more memorable it was. This is consistent with von Restorff
effect (von Restorff, 1933), and, more importantly, confirms that
interindividual consistency in memory performance can be induced
by stimulus-extrinsic factors (Bylinskii et al., 2015). Therefore,
interindividual consistency in memory performance alone cannot
guarantee the existence of stimulus-intrinsic memorability.

ResMem Predicts Memorability Scores Independent of
Interstimulus Similarity

Next, we examined whether ResMem would be able to predict
observed memorability scores of this novel stimulus set. As can be
seen in Figure 2B, despite a substantial difference between the training
stimuli (i.e., pictures of objects and scenes with a diverse and rich
background) and current stimuli (i.e., pictures of objects with a
white background), ResMem’s predictions reliably correlated with

memorability scores, r(346)=−.16, p= .002, Figure 2B. To deter-
mine whether this relationship was attributable to ResMem’s sensitiv-
ity to interstimulus distance, we regressed the effect of interstimulus
distance out of observed memorability scores and remeasured the cor-
relation. Upon doing so, we found that the relationship persisted,
r(346)=−.14, p= .005, Figure 2C. Thus, we concluded that
ResMem’s ability to predict interindividual consistency in memory
performancewas not based on thewithin-category interitem similarity
but likely reflected its sensitivity to stimulus-intrinsic properties that
made a stimulus memorable or forgettable.

Experiments 2 and 3

ResMem and Humans Have Reliable, But Imperfect Access
to Memorability

Similar to Experiment 1, we found in Experiments 2A and 2B that
ResMem successfully predicted memorability scores for the novel
object stimulus set, r(598)= .11, p= .009, Figure 3A. The predic-
tion power of ResMem resembled the five data collections we
found using the common object set (Zhao et al., 2022). As demon-
strated in Saito et al. (2023), humans also predicted the memorability
of stimuli when they explicitly encoded the stimuli, PES in
Experiment 2A, r(598)= .71, p, .001, Figure 3B, and when they
did not, PM in Experiment 2B, r(598)= .60, p, .001, Figure 3C.

Experiments 3A and 3B replicated these findings with scene images.
ResMem successfully predicted memorability scores for scene images,
r(598)= .43, p, .001, Figure 4A. Additionally, we generalized the
findings of Saito et al. (2023) to scene images. In other words, humans
reliably predicted memorability scores when they explicitly encoded the
stimuli, r(598)= .55, p, .001, Figure 4B, and when they did not,
r(598)= .41, p, .001, Figure 4C. These results revealed that both
ResMemand humans had reliable but imperfect access tomemorability.

ResMem Predicts Aspects of Memorability Inaccessible to
Humans

To test whether ResMem and human observers utilized the same
aspects of memorability for their respective predictions, we tested
whether ResMem could predict humans’ PM ratings. As can be seen
in Figure 3, ResMem did not predict the PM ratings made by humans
during explicit encoding, i.e., PES ratings, PES, r(598)= .03, p= .42,

Figure 2
Results of Experiment 1
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Note. Panel A shows the correlation betweenmemorability scores and interstimulus distances. Panel B shows the correlation between observedmemorability
scores and the memorability scores that were predicted by ResMem. Panel C shows the correlation between observed memorability score residuals after
regressing out interstimulus distance and the memorability scores that were predicted by ResMem. See the online article for the color version of this figure.
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see Figure 3D, nor those made in the absence of explicit encoding, i.e.,
PM ratings, PM, r(598)= .01, p= .72, Figure 3E.Whenwe compared
ResMem’s prediction strength for memorability and humans’memora-
bility predictions, we found that ResMem performed significantly bet-
ter in predicting the actual memorability than predicting its human
predictions (Fisher’s Z= 2.577, p= .010, for PES in Experiment
2A; Fisher’s Z= 2.743, p= .006 for PM in Experiment 2B, cf.
Meng et al., 1992 for the method of comparing the strength of corre-
lated correlations). These findings suggest that ResMem and human
observers accessed distinct properties of a given stimulus in order to
successfully predict its memorability (Figure 3F and 3G actual
memorability� PES +ResMem in Experiment 2A, and actual
memorability� PM+ResMem in Experiment 2B).
While ResMem demonstrated more robust predictive power for scene

memorability, we replicated that ResMem and humans accessed separa-
ble aspects of scene memorability. Although ResMem did predict the
humans’ memorability ratings made during explicit encoding, PES in
Experiment 3A, r(598)= .21, p, .001, Figure 4D, and those made
in its absence, PM in Experiment 3B, r(598)= .08, p= .045,
Figure 4E, ResMem’s prediction strength for the actual memorability
was significantly better, PES in Experiment 3A: Fisher’s Z= 6.134,
p, .001; PM inExperiment 3B:Fisher’sZ= 8.44,p, .001.Thesefind-
ings replicate that ResMem and human observers accessed distinct prop-
erties of scene images to successfully predict its memorability (Figure 4F
and 4G, actual memorability� PES+ResMem in Experiment 3A, and
actual memorability� PM+ResMem in Experiment 3B).

Discussion

Memory performance for a given visual stimulus is surprisingly
consistent across individuals, suggesting the existence of memorability.

A recent demonstration that a pretrained deep neural network called
ResMem can predict the memorability based on the perceptual proper-
ties of a given images is consistent with this hypothesis. However,
whether ResMem utilizes stimulus-extrinsic properties that emerge
due to contextual relationship among a given set of stimuli (e.g., inter-
stimulus similarity) used in its training or stimulus-intrinsic properties
possessed by each item independent of other stimuli in the set has
been unclear. To test this in Experiment 1, we had participants remem-
ber a novel stimulus set whose within-category interstimulus similarity
was experimentally manipulated and had ResMem predict the memo-
rability for each stimulus. Here, despite the novelty of the stimulus set to
ResMem, it predicted the memorability independently of the interstim-
ulus similarity. This suggests that ResMem captures interindividual
consistency in memory performance that likely stem from stimulus-
intrinsic properties of each stimulus that are immune to within-
categorical, stimulus-extrinsic factors.

One crucial aspect of our finding was that more perceptually sim-
ilar items were associated with lower memorability, though ResMem
did not utilize this aspect in predicting memorability. This result
might be explained by a high-dimensional account of memorability.
According to this account, memorability is reflected in the magni-
tude of neural activations, whereas object identities are reflected in
the direction of neuronal activations in the higher visual cortex
(Rust & Mehrpour, 2020). If ResMem approximates the magnitudes
of neural activations in the higher visual cortex, whereas the inter-
stimulus similarity is characterized by the similarity in the directions
of neural activations, it makes sense that ResMem’s prediction is
orthogonal to interstimulus similarity.

Our result, on the other hand, might seem contradictory to previ-
ous findings that associated higher similarities in neural activation
patterns with memorable stimuli than with forgettable stimuli

Figure 3
Results of Experiments 2A and 2B
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Note. Panel A shows the correlation between observed memorability scores and ResMem predictions for object images. Panels B and C show the correlation
between observed memorability scores and the PES ratings (Experiment 2A) and the PM ratings (Experiment 2B), respectively, that were made by human
observers. Panels D and E show the correlation between ResMem predictions and PES (Experiment 2A) and PM (Experiment 2B), respectively. Panels F
and G show Venn’s diagrams for the variance in memorability explained by humans’ predictions (PES in Experiment 2A and PM in Experiment 2B).
The shared variance between humans’ and ResMem’s predictions was much smaller than the unique variance explained by each factor. PES= perceived
encoding success; PM= perceived memorability. See the online article for the color version of this figure.
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(Bainbridge & Rissman, 2018; Bainbridge et al., 2017). One possi-
bility for this seeming discrepancy may be that the previous findings
focused on within-category (i.e., faces) variabilities in memorability
whereas our study examined cross-category (i.e., objects and scenes)
variabilities in memorability. Future studies are necessary to eluci-
date the effect of category granularity on memorability.
Of equal importance, researchers have questioned whether and to

what extent humans have explicit access to memorability (Isola et al.,
2014; Saito et al., 2023). To answer this, Experiments 2A and 2B
first showed that both ResMem and humans reliably predicted mem-
orability. More critically, ResMem predicted the actual memorabil-
ity significantly better than it predicted humans’ predictions of
memorability. We replicated these findings with scene images in
Experiments 3A and 3B, despite much more robust memorability
prediction by ResMem. These results reveal the utility of ResMem
in isolating aspects of memorability that are not explicitly accessible
to humans. Conversely, the observed insensitivity of ResMem to a
stimulus-extrinsic contributor to memorability (i.e., within-category
interitem similarity) might imply that humans uniquely utilize such
factor to estimate memorability. Future studies should examine this
possibility by measuring PM by directly manipulating such
stimulus-extrinsic factors.
Although our findings extend the existing account that not all

aspects of memorability are explicitly accessible to human observers
(Bainbridge et al., 2013, 2017; Isola et al., 2014; Saito et al., 2023),
the present study does not inform us about what these aspects are or
what underlying processes differentiate the accessible aspects from
the inaccessible aspects. Future studies should explore this as the
findings can inform us as to whether and how we can train human
observers to be fully aware of stimulus-intrinsic memorability.
Additionally, ResMem’s inability to predict PM does not mean

that a neural network with the same architecture cannot be trained
to predict them. For instance, a recent paper has presented a theoret-
ical account using artificial networks in explaining the emergence of
metamemory (Yamato et al., 2022). Additional studies in training
either human or artificial network in predicting memorability
would be informative in determining how the divergence of PM
from true memorability emerge through the hierarchy of visual infor-
mation processing. Lastly, our demonstration of the dissociability
for humans’ and ResMem’s memorability predictions was limited
to static images of individuated objects and scenes. Given that a
recent study demonstrated memorability for dynamic stimuli such
as dance moves (Ongchoco et al., 2023), future studies should
also explore whether and how humans and deep neural networks
can predict memorability for such dynamic stimuli. Going beyond,
future studies should also explore memorability in other stimulus
domains, such as verbal stimuli (Aka et al., 2023; Kramer et al.,
2023; Madan, 2021). With the recent development in large language
models, more insights could be gained from comparing machine
learning and human observers in predicting memorability using ver-
bal and even syntactic materials.

Constraints of Generality

Ourexperiments used a large numberof isolated objects (Experiments 1
and 2) as well as scenes (Experiment 3) as our stimuli. We replicated
our key findings, that ResMem predicts stimulus-intrinsic memorabil-
ity inaccessible to human observers, with both objects and scenes as
the stimulus set. Therefore, we expect our key findings to generalize to
a wide range of meaningful visual stimuli.

Our experiments contained both in-lab and online participants.
Specifically, we recruited students from the University of Toronto

Figure 4
Results of Experiments 3A and 3B
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population in Experiment 1, and we recruited online participants
from Prolific in Experiments 2 and 3. Therefore, we believe that
our results are generalizable across samples of human populations
both inside and outside of lab settings.
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